SETI@home banner

SETI@home ¦p¦ó¹B§@¡H


SETI@home ¨s³º¦b§ä¨Ç¤°»ò¡H

¨s³º¤j®a¦bÀ° SETI@home °µ¤°»ò¡H ¤j®a¦b¸ê®Æ¤¤´M§ä¤°»ò¡H³o­Ó°ÝÃD«D±`®e©ö¦^µª¡A¨º´N¬O°²³]¦³¥~¬P¤H±N¡u°T®§¡v¶Ç°eµ¹§Ú­Ì¡A¦Ó§Ú­Ì«h·Q¿ìªk±N¡u°T®§¡v§ä¥X¨Ó¡C°²³]¥L­Ì (¥~¬P¤H) ·|¥HµL½u¹qªiªº¤è¦¡¦V¥~¶Ç»¼¡u°T®§¡v-- ³o¬O³Ì¦³®Ä²v¡B¦P®É¤]³Ì®e©ö³Q§Ú­Ì°»´úªº°T®§¶Ç»¼¤è¦¡¡A³o¨ÇµL½u¹qªi¤£¤j¥i¯à¥H¥þÀW²v¦V¥~µo®g¡A¦]¬°³oºØ¤è¦¡·|®ö¶O¤Ó¦h¯à·½¡A¤£²Å¡u¸gÀٮįq¡v¡F³Ì¦³¥i¯àªº¤èªk¡A¬O±N°T®§³z¹LÀW²v½d³ò·¥¯¶ªºµL½u¹qªi¡]¯¶ªi¡^¦V¥~µo®g¡A°£¤F¸`¬Ù¯à·½¡A¦P®É±µ¦¬ºÝ¤]¸û®e©ö±N²V¦X¦b¦t©z­I´ºÂø°T¤¤ªº¯¶ªi°T¸¹¡u¹LÂo¡v¥X¨Ó¡F¤×¨ä¬OÂù¤è¶ZÂ÷«D±`»»»·®É¡A¹qºÏªi±j«×·|°I´î±o·¥¬°ÄY­«¡C©Ò¥H SETI@home ¨Ã¤£¹ï¼eÀW°T¸¹§@¤ÀªR¡A¦Ó¬O°w¹ïÀW²v«D±`¯S®íªº¯¶ÀW°T¸¹¬°·j´M¥Ø¼Ð¡C SETI@home µ{¦¡ªº°Ê§@­ì²z«D±`Ãþ¦ü¤@¯ëªº¦¬­µ¾÷¡A¥¦¤£°±ªº¤Á´«¨ì¤£¦PªºÀW¹D¡A¤£°±ªºª`·NµÛ±µ¦¬ªº°T¸¹±j«×¡A¤@¥¹°T¸¹±j«×¦³¡u¥ý»¼¼W¡B«á»¼´î¡vªº¸ñ¶H¡A´N·|±N¨ä¬ÛÃöª¬ºA°O¿ý¤U¨Ó¡C

¦ÓµL½u¹q±æ»·Ãè©Ò±µ¦¬ªº°T¸¹¡AùØ­±©|¦³¤@¨Ç¦]¯À¥²¶·¥[¥H¿ëÃÑ¡B±Æ°£¡F¦p¦aªí¥»¨­©Ò´²®gªº¹qºÏªi¡B¤H³y½Ã¬P³q°T¹qªi....µ¥¡A³o¨Ç¥Ñ¦a²y¥»¨­©Ò´²®gªºµL½u¹q°T¸¹¡A¤£¶È¦³µÛ¤@©wªº±j«×¡A¥B·|¤£Â_¦a²£¥Í¡C¥t¤@­Ó¦]¯À¡A Arecibo µL½u¹q±æ»·Ãè¬O¤@­Ó©T©w©ó¦a­±ªº¤j«¬µL½u¹q±µ¦¬³]³Æ¡A¤£¯à§ïÅܱµ¦¬¥õ¨¤¡A©Ò¥H¥¦µLªk¹ï¥ô¤@¬P¨t§@Âê©w°lÂÜ¡F¦Ó¥B¤£Â_º}²¾ªº¬PªÅ¡A¨Ï±æ»·Ã誺¡uÃèÀY¡vµJÂI¤]¤£Â_¦a¦b¬PªÅ¤¤²¾°ÊµÛ¡C¥Ø¼Ðª«¶i¤J¡uÃèÀY¡vºÊµø½d³ò¨ìÂ÷¶}ºÊµø½d³ò¡A¥u¦³ 12 ¬íªº®É¶¡¡C¦]¦¹¡A§Ú­Ì¥u¦n°²³]¡A¦b±æ»·Ãè¡uÃèÀY¡vºÊµø½d³òªº 12 ¬í¤§¤¤¡A¡u¥~¬P¤H¡v´ê¥©µo¥X±j«×°÷¤jªº°T¸¹¡A¤~¯à³Q§Ú­Ì¦¬¨ì¡C°Ñ»PªÌ©Ò¦¬¨ìªº¨C­Ó Work-Unit¡A³£¬O³sÄò 100 ¬í©Ò±µ¦¬ªº¸ê®Æ¡A¨C­Ó Work-Unit ©¼¦¹³£¦³¤p³¡¥÷­«Å|¡A¦p¦¹¡A´N¯à½T«O¤£·|¦³¥ô¦ó¤@­Ó­«­nªºÃöÁä°T¸¹¦]¡u¤Á³Î¡v¦Óº|¥¢¡C

See the section on RFI (Radio Frequency Interference) for more details.

Let's look at and some examples. If you have RealAudio, you can also listen to simulations of what it might sound like (though remember that these signals are radio waves, not sound waves…)


Click graph for RealAudio sound
¥ª¹Ï¡AX¶bªí®É¶¡¡AY¶bªí°T¸¹ÀW²v¡F·í¤¤¬O¤@­Ó¼eÀW°T¸¹¡A¥¦¬O¥Ñ³\¦h¤£¦PªºÀW²v²V¦X¦Ó¦¨¡C³Ì¥ª°¼¬O±j«×³Ì®z(«G«×¸û·tªí¤§)ªº°T¸¹¡A¦V¥k°¼»¼¼W¡]«G«×¼W¥[ªí¤§¡^¡A6 ¬í«á¹F³Ì¤j¤¤¤ß±j«× (¦]¬°¦¹®É°T¸¹¥Ø¼Ð¥¿¦n¦ì²¾¨ì±æ»·Ãè¡uÃèÀY¡v¥¿¤¤¥¡) ¡F¤§«á 6 ¬í±j«×»¼´î¡C¦Ó³o 12 ¬í¡A´N¬O§Ú­Ì°²³]­Y¯u¦³¡u¥~¬P¤H¡vµo®g°T¸¹µ¹§Ú­Ì¡A»·±æÃè¥u¯à³sÄò±µ¦¬¨ä 12 ¬íªº°T¸¹¡C¦b¦t©z¤¤¡A¦³³\¦h¤Ñ¤å¬PÅé³£·|µo¥X³o¼Ëªº¼eÀW°T¸¹¡A¤]¦]¦¹ SETI ¨Ã¤£·|¹ï¼eÀW°T¸¹§@¤ÀªR¨Ã¥[¥H±Æ°£¡C

¥k¹Ï©ÒÅã¥Üªº¯¶ÀW°T¸¹¡A¥¦ªºÀW²v¶°¤¤¦b¤@­Ó«D±`¯U¯¶ªº½d³ò¡A¦b 12 ¬íªº®É¶¡¤º¡A¥¦¤´¦³±j®zªºÅܤơC§Ú­Ì¤£ª¾¹D¥¦ªºÀW¼e¨ì©³¦³¦h¯¶¡A©Ò¥H§Ú­Ì·|¥H¦hºØ¤£¦PªºÀW¼e½d³ò¹ï¥¦¶i¦æÀË´ú¡C
Click graph for RealAudio sound


Click graph for RealAudio sound
¦pªG«¥­Ìªº¡u¥~¬PªB¤Í¡v¡A¯u·Q§â½T¹êªº°T®§¥[¤Jµo®gªºµL½u¹qªi¤¤¡A¨º»ò¨ä°T¸¹À³¸Ó·|¥H¯ßªiªº«¬¦¡ (¦p¥k¹Ï) §e²{¥X¨Ó¡A³o¼Ë¤]¤ñ¸û®e©ö¬°§Ú­Ì©Òµo²{¡C

¦t©z¤¤¥ô¦ó¨â­Ó¬P¨t©¼¦¹ªº¬Û¹ï¦ì¸m¡A¤£¤Ó¥i¯à«O®ÉÀR¤î¤£°Ê¡F´N¦]¬°©¼¦¹ªº¬Û¹ï¦ì¸m·|¤£Â_ªºÅܤơA©Ò¥H±µ¦¬¤§°T¸¹·|¦³³£¤R°Ç¬Û²¾ (Doppler Shifting) ©ÎÀW²vªº§ïÅÜ¡C¦b12¬í¤ºÀW²v¨Ç·LªºÅܤơA§Ú­ÌºÙ¬°¡uChirped Signals¡v¡F;³o¤]¬O§Ú­Ì­nÀË´úªº¶µ¥Ø¤§¤@¡C
Click graph for RealAudio sound


Click graph for RealAudio sound
·íµM¡A¨º¨Ç¥]§t¯ßªiªº³£¤R°Ç¬Û²¾°T¸¹¡A§Ú­Ì¤]­n¥[¥HÀˬd¡C

 

Extra Credit Section: More detail on the analysis

SETI@home µ{¦¡¹ï·L®z°T¸¹ªº·j´M¯à¤O¡A¤ñ Arecibo ±µ¦¬¯¸©Ò±Ä¥Îªº SERENDIP IV ³nÅéµ{¦¡­n°ª¥X¤Q­¿¡F³o¬O¦]¬° SETI@home µ{¦¡©Ò±Ä¥Îªº¬O¤@ºØ·¥¬°Ác½Æ­pºâªººtºâªk - ¡uCoherent Integration¡v¡F¥Ø«eÁÙ¨S¦³¹q¸£³]³Æ¦³¥R¤À¯à¤O¥iÀ³¥I³oºØ¼Æ¾Ç¹Bºâ¤è¦¡¡C¥t¤@¤è­±¡A«h¹ï¸ê®Æ§@§Ö³t·Á¥ß¸­Âà´« (Fast Fourier Transforms) ¡AÂǦ¹¦b²V¦XµÛ¤£¦PÀW²v¡BÀW¼e»P¬Û²¾²vªºµL½u¹qªi¤¤¡A§ä¥X°ª±j«×°T¸¹¨Ã¥[¥H°O¿ý¡C°Ñ»PªÌ¥Ñ SETI@home ¦øªA¾¹©Ò¦¬¨ìªº Work-Unit¡A¬Ò¬O¥H¤W­z¨BÆJ§@³B²z¡C

¦A¨Ó«h»¡©ú¡A¬°¦ó SETI@home µ{¦¡·|¦p¦¹¡u¤¿²r¡vªº®ø¯Ó¹q¸£ªº¹Bºâ¸ê·½¡C­º¥ý§Ú­Ì­n¹ï¸ê®Æ§@¡u¬Û²¾ÁÙ­ì¡v¡A§â³£¤R°Ç¥[³t©Ò²£¥Íªº¼vÅT²¾°£¡C­º¥ý¡Aªì©l½d³ò±q ¡V5 Hz/Sec ¨ì +5 Hz/sec¡A¶¡¹j 0.002 Hz/Sec¡A¦@°õ¦æ 5000 ¦¸¡C¦b¨ä¤¤¨C¤@­Ó¬Û²¾³B²z¤¤¡A±N®É¶¡½d³ò¬° 107 ¬íªº¸ê®Æ§@¬Û²¾ÁÙ­ì¡A¨Ã¥H 13.375 ¬íªº¶¡¹j¤À³Î¦¨ 8 ­Ó°Ï¶ô¡A¨C­Ó 13.375 ¬íªº°Ï¶ô¦A¥H 0.07 Hz ªºÀW¼e½d³ò¥hÀˬd¨ä¹qªi®p­È±j«×¡C¥ú¬O³o¤@¨BÆJ¡A±zªº¹q¸£´N¤w¸g°µ¤F³ü»õ¦¸¹Bºâ°Ê§@¡C

³o¼ËÁÙ¨S§¹©O¡A§Ú­Ì¥²¶·¥H¨ä¥¦ÀW¼e¦A¶i¦æÀˬd¡I§Ú­Ì±NÀˬd®p­È±j«×ªºÀW¼e¥[­¿¨ì 0.15 Hz¡A¬Û²¾³B²z½d³ò¤]¦P¨B¥[­¿¦¨ ¡V10 Hz/Sec ¦Ü +10 Hz/Sec¡CÁöµMÀË´ú½d³ò¬O«e¤@¨BÆJªº 2 ­¿¡A¦ý¹ê»Ú¤W¡A¹BºâÁ`¶q¥u¦³«e¤@¨BÆJªº¤G¤À¤§¤@¡A¬ù¥î¥a¸U¦¸¹Bºâ°Ê§@¡C

±µ¤U¨Ó¡A¦A±NÀË´úÀW¼e¥Ñ 0.15 Hz ¥[­¿¨ì 0.3 Hz¡]ª`·N¡A¦¹®É°_¡A¬Û²¾½d³ò´N«O®É¦b ¡V10 Hz/Sec ¦Ü +10 Hz/Sec¡^¡F³o­Ó¨BÆJªº¹BºâÁ`¶q¬°«e¤@¨BÆJªº¥|¤À¤§¤@¡A¬ù³ü¥a¶L¨Õ¥î¬B¸U¦¸¡C¦p¦¹¦@¶i¦æ¤F 14 ¦¸ªºÀW¼e¥[­¿³B²z°Ê§@(0.07¡B0.15¡B0.3¡B0.6¡B1.2¡B2.5¡B5¡B10¡B20¡B40¡B75¡B150¡B300¡B600 »P 1200 Hz)¡A²Ö¿n¹Bºâ°Ê§@¬°³ü»õ¬m¥a¥î¨Õ¸U¦¸¡F¦Ó SETI µ{¦¡¦³ 70% ªº¤u§@³£¶°¤¤©ó¯¶ªiªº¤ÀªR¡C

³Ì«á¡A±q²VÂøµÛ¦UºØÀW²v¡BÀW¼e»P¬Û²¾°T¸¹ªºµL½u¹qªi¤¤¡Aªì¨B±o¨ìªº°ª±j«×®p­È¹qªi¡A¥²¶·¦A¶i¦æ¡u¤H¤u°T¸¹¤zÂZ§PÂ_´ú¸Õ¡v¡C¥u¦³¦b 12 ¬í®É¶¡½d³ò¤º¡A¨ä°T¸¹±j«×¦³¡u¥ý»¼¼W¡B«á»¼´î¡vªº±¡§Î ( 12 ¬í¬°¬PªÅ©T©w¥Ø¼Ð³q¹L±æ»·Ãè¡uÃèÀY¡vªº®É¶¡¡A¦Ó·í¥Ø¼Ð³q¹L¡uÃèÀY¡v®É¡A±µ¦¬¤§°T¸¹±j«×¦ÛµM·|²£¥Í¡u¥ý»¼¼W¡B«á»¼´î¡vªº²{¶H)¡A³o­Ó°T¸¹¤~·|³Q¦C¤J¡u¥i¯à¨Ó¦Û¥~¬P¤å©ú¡v¨Ã¥[¥H¦Ò¶q¡C

Finding pulsed signals

All the above work is done just to find a continuous extraterrestrial signal - one that's "always on", or an intense pulses. What if our alien friends are trying to signal us with a series of regularly spaced pulses? That means that we must also look for a signal that regularly varies in power over time. SETI@home applies two different tests. One of these tests looks for pulse triplets that are relatively strong. The other test looks for lots of equally spaced, but weak pulses.

The triplet test is pretty simple. For every frequency slice in the spectrum, the computer looks for pulses above a certain threshold value. This threshold is set at a reasonable value so as to reveal a reasonable number of pulses, yet not overwhelm us with noise that would cause us useless calculation. For every pair of pulses above the threshold, the screensaver looks for a pulse exactly in between the two. If it finds one, the screensaver logs it and sends the data back to Berkeley. The screen saver does this intelligently, so that it does not repeat itself in trying ALL pairs. Remember that it must do this for EVERY frequency slice in your 10kHz sample!

The second pulse detection method is a little more complicated. It was developed specially by the SETI@home team just for this purpose. It's called a "fast folding algorithm." Again we do this analysis on every frequency slice in your 10kHz piece of data. This method was designed to detect lots of small repeating pulses in the data. These small pulses may be weak enough to seem lost in the noise and be undetectable. We start by selecting a frequency slice from the data set to examine. We now look at this power vs. time data for the pulses. The screensaver slices up the data into uniform sized time chunks and adds the chunks all together. If the size of the time chunk is the same as (or a multiple of) the period of the pulses, all the pulses will add one on top of the other and we will see the pulses grow out of the noise. The hard part here is that we must guess the correct size for the time slice. Since we have no idea what the frequency of the pulses might be, we have to try ALL the various time periods. Again, the algorithm does this in such a way that it will not repeat work already done. If repeating pulses are found, they are logged and sent back to Berkeley. How long should all these computations take? An average, current model home home computer should take between 10 and 50 hours to complete one work-unit. This assumes that the computer ONLY works on SETI@home.

Depending on how the telescope was moving when the work unit was recorded, your computer will do between 2.4 trillion and 3.8 trillion mathematical operations (flops or floating point operations in technical jargon) to complete its work.

¤ÀªR¤@­Ó¤u§@³æ¦ì¡A¤@¯ëªº¹q¸£¨s³º­nªá¶O¦h¤Ö®É¶¡¡H­Y¹q¸£¦b®É¶¡¤º¥u¥Î©ó°õ¦æ SETI@home µ{¦¡¡A±`¨£ªº®a¥Î¾÷«¬¬ù 10 ¨ì 50 ¤p®É¡C

²{¦b¡A¤j®aÀ³¸Ó©úÁA¡A¬°¦ó SETI@home »Ý­n¤j®a¤@°_¨ÓÀ°¦£¡I

Continue



    ¥»­¶Ä¶ªÌ¬°¡GÜå¤l¡F ®Õ½Z¡GSFK
¦p±ýÂà¸ü½Ð¨Ó«H§iª¾¡AÁÂÁ¡C
setitaiwan@yahoo.com
¥»­¶­ì¤åºô§}¡G http://setiathome.ssl.berkeley.edu/about_seti/about_seti_at_home_4.html